On Simulation of e-Learning Convergence Time Using Artificial Neural Networks
نویسنده
چکیده
This paper addresses a challenging and critical issue of how to evaluate dynamically e-Learners' performance. That is by considering their learning response (convergence) time to reach desired output answer. More precisely, this piece of research aims to investigate realistically performance of eeducational phenomenon associated with e-learners' brain response time. Moreover, presented work integrates neuronal sciences and computer technology into e-educational environment as an interdisciplinary research direction to study realistically e-learning performance issue. Accordingly, Artificial Neural Networks (ANN) models are suggested for realistic performance evaluation of timely dependant response till reaching learning process convergence. So, response time is adopted as an appropriate candidate parameter for e-learning systems' evaluation. Herein, analysis of response time parameter considers individual learners' differences while performing learning process. Additionally, evaluated effect of contributing neurons on e-learning processes performance is presented. Finally, after running of suggested realistic simulation programs, some interesting results are introduced.
منابع مشابه
On the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملProject Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks
The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملOptimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کامل